The Jasmine OpenSSD Platform

Version 1.2

FTL Developer's Guide

S
25 [Jwl
ae(iil
g
1

i
oA
wC

The Jasmine OpenSSD Platform: FTL Developer’'s Guide Version 1.2

Revision history

Date Author Description Rev

2011-04-27 Sangphil Lim Initial release 1.0
(Sungkyunkwan University)

2011-05-20 Sangphil Lim Section 2.2 update 1.1
(Sungkyunkwan University)

2012-01-12 Sangphil Lim Section 2.2.3 update 1.2
(Sungkyunkwan University)

2015-08-22 Preethika Kasu, Donghyun Kang, Heerak Lim Translated to English 1.2

(Ajou University)

Page 2

Copyright 2011 VLDB Lab. All rights reserved.

The Jasmine OpenSSD Platform: FTL Developer’'s Guide Version 1.2

Contents
The Jasmine OpenSSD Platform: FTL Developer’s
Guide

o] o Y o RN 4

ABOUT THIS DOCUMENT 1vvvvuvvrurareressnnne 4

CONTENTS eveeeteeeteserereseresesesasasesssesesesesesesesessseseseseseseses 4

FURTHER READING ...uuuuuuusussnsnne 4

FEEDBACK vvvvvvvvvvuessssssussnsene 4

CHAPTER1. GETTING STARTED TO DEVELOP AN FTL «.cceieriirereceirerececeneerececeneesecacassssesecnes 5
1.1. DEVELOPMENT ENVIRONMENT ..evvveriririereeeereererererereeeeerereeereressesrsssssssssessessrsrsresesereresersrersrerereresessrerens 5
CHAPTER2. FTLPORTINGcccieiieiuinieiierecnceceerereceserececassssesecasassesacnsnssesssacassssesasnssssasasnss 7
2.0, PORTING GUIDE ..uuuuuvuuusuussussesssene 7

2.2. PORTING EXAMPLE —GREEDYFTL .uuuvvuuuuuuuuuuuusssuusssessssrssnns 9

2.3, HOW TO VERIFY FTL OPERATIONS? ...uuuuuuverurssssesssesssssssesssene 12

2.4, SETTINGS TO BUILD uuvuvuuuuuuereussusssssssssesssene 12
CHAPTER3. COMPILE, BUILD & INSTALL FIRMWAREcccctuiieuienirnciniinrenciniinerencencsnnns 13
3.1, COMPILE & BUILD FIRMWARE ...uuuvuuusueussssssssssssssssssssssessnens 13

3.2, INSTALL FIRMWARE et eeeeetttieeeeeeseetstieseeeeesessneaseeesssssannasessssssssnnaesesssssssannsesessssssnnneeesesssssnnnnenees 14
CHAPTERA. DEBUGGING TIPSccicteitiieteceienrerececesrerecacesserosecsssesesassssssesscsssssesssnssssesaenns 17
4.1, DEBUGGING WITH UART ..ot ceee s eese e e e ee s e e e e e e e e e e e e e s e s e s e s e se s e s e s e s e seseeeseeeensesesesnsesesesesesesesesens 17

4.2, DEBUGGING WITH RVD .. oo iiie et e e e e e e e s e e e s e s e e e s e e e e e s e e e s e e e s e seeeseeeeesnsnseensesesneesesens 19

Page 3

Copyright 2011 VLDB Lab. All rights reserved.

The Jasmine OpenSSD Platform: FTL Developer’'s Guide Version 1.2

Preface

About this Document

This manual guides to develop a FTL for Jasmine OpenSSD Platform which is based

on the controller of Barefoot™

Chapter 1.Getting Started to Develop an FTL

This chapter explains the development environment setup process before we

port FTL to Jasmine OpenSSD platform
Chapter 2.FTL Porting

This chapter explains the process to port a new FTL firmware to Jasmine OpenSSD

platform
Chapter 3.Compile, Build & Install Firmware

This chapter explains the process to compile and build the firmware and also
describes the firmware installation process on the Jasmine board

Chapter 4.Debugging Tips

This chapter introduces several debugging techniques to verify the firmware

installed on the Jasmine board

Further Reading

For better understanding refer OpenSSD and RealViewDebugger

Page 4

Copyright 2011 VLDB Lab. All rights reserved.

http://www.openssd-project.org/wiki/

The Jasmine OpenSSD Platform: FTL Developer’'s Guide Version 1.2

Chapter 1.
Getting Started to Develop an FTL

This chapter introduces the development environment before starting the FTL development

for Jasmine OpenSSD platform. The following are the key contents in this chapter:

v Hardware and Software requirements for FTL development

v Development environment building guide

1.1. Development Environment
1.1.1. Requirements Specification

To develop a new FTL firmware on the Jasmine OpenSSD platform, the following are

the recommended requirements:
H/W requirement

e TestPC :1
o Communicates with the Jasmine Board
e (lientPC:1
o Debugs using RVD(RealViewDebugger) or UART
e Jasmine Board
0 Jasmine board with the flash module attached, SATA and RS232 cable
. RealView In-Circuit Emulator(ICE) equipment(optional)
o ICE body, Ethernet/USB cable, JTAG connection cable
S/W requirement
e O/S: Windows XPSP2
e Firmware compiler software
o RVDS(RealView Development Suite) 3.0 ormore

o Or GNU Compilation toolchain (The Sourcery G++ Lite Edition)
o Microsoft Visual Studio8
o Add PATH environment variable: C:\Program Files\Microsoft Visual
Studio8\VC\
e Jasmine OpenSSD platform firmware

e using UART, Hyper terminal program is needed

1.1.2. Development Environment Setup

Build the development environment referring Figure (1) meeting the

requirements in 1.1.1

Page 5

Copyright 2011 VLDB Lab. All rights reserved.

The Jasmine OpenSSD Platform: FTL Developer’'s Guide Version 1.2

Client PC

Compile/Build &
Debugging

Ethernet or USB port

RealVi
e ~ S

JTAG
UART
—
™
Q
o
O

ARM7TDMI-S
Core

Jasmine Board Running o
Host application

Figure (1) FTL Development Environment

SATA

e Connect Jasmine board to power and Test PC with SATA cable

e For debugging, connect RVICE device to Ethernet or USB port, connect UART
interface of Jasmine board to Test PC with RS232 serial cable

° Install RVDS, RV ICE software and SSD firmware to Client PC
O evaluate RV ICE and Jasmine board with RV debugger

NOTE: Client PC is not required when host application is used for bench mark or
UART port is used to debug i.e, when RV debugger is not used

Page 6

Copyright 2011 VLDB Lab. All rights reserved.

The Jasmine OpenSSD Platform: FTL Developer's Guide

Version 1.2

Chapter 2.
FTL Porting

This chapter explains how to port new FTL to Jasmine OpenSSD platform

2.1. Porting Guide

While porting, FTL reads and writes data from DRAM or NAND Flash memory. The below

are the points to be considered when accessing the hardware component:

2.1.1.

Implementation

Together with the FTL protocol API, the following functions should be implemented

before porting

Source file

Function

Description

./installer/installer.c

ftl install mapping table

This function is called when the
firmware is installed and records
early metadata to NAND flash

memory

./ftl [scheme]/ftl.c

ftl_open

This function initializes the FTL

- loads and initializes the metadata
form NAND Flash memory

-call format function when VBLK #0

is not in marked state

format

This function erases all the blocks
apart from VBLK #0 and FTL
metadata field

- records format mark

ftl read

This function reads the
user data

ftl write

This function writes the
user data

ftl flush

This function flushes the metadata
to each SATA idle/ stand by time on
a regular basis

2.1.2.

DRAM Host Buffer Management

SATA interface buffers the user data at DRAM host buffer (i.e. SATA Read / Write
buffer). When a read request is triggered, the read ATA command is sent form the

event queue, then FTL sends FCP command to flash memory controller to read the
data from NAND flash. Finally, the data is transferred to the assigned SATA read
buffer. When a write request is triggered, the data is stored at the NAND flash.

Page 7

Copyright 2011 VLDB Lab. All rights reserved.

VLDB L
http://vidb.skku.ac.kr

The Jasmine OpenSSD Platform: FTL Developer’'s Guide Version 1.2

DRAM host buffer is managed by SATA and FTL by adjusting the pointer in the
hardware buffer manager. Buffer pointer can be clashed due to the difference in the I/0
performance of Flash memory and SATA bandwidth. To overcome the clash, FTL should
be implemented in ftl_read / write functions such that the buffer pointer should be
incremented to avoid the rotational queue way of the host buffer

NOTE: This is applicable only if the commands are passed directly to the Flash
controller by adjusting the FCP. It is not applicable if FTL is implemented using LLD
library as LLD adjusts the DRAM host buffer pointer

2.1.3. DRAM Access Limitation

Barefoot controller uses hardware ECC engine to improve the reliability of DRAM data.
The data in the memory can be lost or invalid data can be read when CPU directly
reads or writes DRAM data due to the ECC parity data. Therefore, for the reliable
DRAM data, DRAM data should be accessed by hardware Memory Utility
(./include/mem_util.h). For example, the metadata in DRAM can be accessed
using read dram xx or write dram xx library respectively to read the data
from DRAM to SRAM and to write the data from SRAM to DRAM (mem copy can
also be used)

The performance can be improved with mem_copy utility, if the frequently used
DRAM data is cached in SRAM

The following are the constraints to be considered before working with memory:

1. 4 Byte ECC parity information per 128 Byte would be added

2. Available DRAM field is 64MB*128/132 = 65075200Bytes

3. Hardware Memory utility must be used while copying data between
DRAM-to-SRAM and SRAM-to-DRAM

4. The size of the data should be equal to the DRAM ECC_UNIT (128
Bytes) while copying the data from DRAM-to-SRAM

5. Starting address of the metadata has to be declared at DRAM and should be a
multiple of DRAM ECC UNITOrBYTES PER SECT size.

2.1.4. NAND configuration

Barefoot controller uses VBLK#0 in flash memory to store firmware binary images and
metadata (e.g. scan list). FTL uses the other blocks (apart from VBLK#0) to store user
data and metadata

Many FTL firmware's proposed many ways to store FTL metadata to spare area of Flash

memory considering the POR/SPOR. However, Barefoot controller can't use spare area
or Flash memory, so FTL logs metadata in separate blocks assigned in advance.

2.1.5. Flash Command

The process that FTL passes 1/0 request to flash memory is briefly explained. First, FTL
sets flash command to FCP which redirects it to the WR (Waiting Room). Then that
command waits in WR for a while. NAND Flash controller checks the bank status of the
flash command and if the bank is idle then deliver the flash command to BSP (Bank
Status Port).

Page 8

Copyright 2011 VLDB Lab. All rights reserved.

The Jasmine OpenSSD Platform: FTL Developer’'s Guide Version 1.2

NOTE: Refer the technical manual for FCP, WR and BSP

As the queue depth of WR is 1’ it must check weather a command already exists in the
queue before passing a new flash command to WR. If the FTL issues a new flash
command while a command already exists in the WR queue, then the existing
command may not work properly. Therefore, it should be carefully implemented

NOTE: Refer the flash issue cmd function of ./target_spw/flash.c

Auto-Select Mode (ADVANCED)

In a write operation, hardware can use Auto-select mode which can maximize I/0
parallelism by selecting automatically bank of idle state. But before passing
FCP_BANK register of FCP should be set to Ox3F

2.2. Porting Example — GreedyFTL

FTL, Greedy FTL (. /ftl greedy/ ftl.c) and page mapping FTL that executes simple garbage
collection operation is implemented in Jasmine firmware. Along with garbage collection
operation, Greedy FTL can also implement normal power-on/off using Power-off
Recovery (POR) function. This chapter explains the functions that should be used during
porting while implementing Greedy FTL

2.2.1. FTL Initialization

Jasmine board first initializes the hardware component. Hardware component then calls
the ftl open function to initialize the FTL. Initialization process of Greedy FTL is described

below:

1 Set the bad block bitmap table by reading scan list from the VBK #0 by calling
build bad blk list function

2 Execute format operation until format mark is written in VBLK #0
0 The format function is responsible for initializing the metadata of
SRAM/DRAM and deleting the scope except in VBLK #0
O Write initialized metadata in meta scope of NAND flash and format mark in
VBLK #0.
0 Ifitis not booting for the first time i.e., no need to execute format, then load
the FTL metadata from NAND flash

3. Initialize the FTL buffer pointer

2.2.2. SRAM Metadata

SRAM manages the frequently referenced FTL metadata which is smaller in size. The
Greedy FTL manages the writing page index pointer on the FTL Meta scope and user
data scope, free block count, statistical information etc. in SRAM.

Page 9

Copyright 2011 VLDB Lab. All rights reserved.

The Jasmine OpenSSD Platform: FTL Developer’'s Guide Version 1.2

2.2.3.

2.2.4.

2.2.5.

Address Mapping

Unlike FTL, the Greedy FTL's address mapping is implemented by fixed bank
mechanism to LPN i.e., a certain LPN always make read/write operation to occur in a
certain bank. The target bank under LPN is calculated by modular operation using
NUM_BANKS and mapping information only manage the VPN information.

The performance of parallelism degrades for a random 10 access and the performance
increases for a sequential 10 access, especially in case of sequential read operation
than FTL.

DRAM Metadata

DRAM reserves a separate memory for the metadata, if the size of
the metadata managed by FTL increases more than the available
space in SRAM. In this case, the ‘DRAM segmentation’ of ftl.h
should be revised.

The following table contains the list of DRAM Meta data managed by Greedy FTL:
Table (1) DRAM metadata for Greedy FTL

Metadata Description
BAD BLK BMP

The bitmap table on bad block list that is obtained from scan list.

PAGE_MAP The size of PAGE_MAP that is needed to map physical page index to

logical page index can be calculated from [the number of total logical
block X block per the number of page X 4B].

VCOUNT Manages the number of available pages in a block that are

responsible for selecting a block to be sacrificed in garbage
collection. The number of VCOUNT can be calculated from [the

number of bank X bank per the number of virtual block X 4B].

NAND Configuration

VBLK 0 1 2~31

Scan list

Size info. Of Misc.
firmware image | metadata
+

VCOUNT

PAGE_MAP User area
Firmware
binary image

Figure (2) NAND configuration in Greedy FTL

The Greedy FTL manages NAND flash as in Figure (2). A part of FTL meta logging
scope is reserved for POR and the remaining scope is used to record the user data. The
FTL metadata is sequentially recorded in meta blocks.

The blocks in user scope have same structure as in Figure (3). If the number of pages
in a block is ‘'m’, pages from 0 to m-2 records the user data and page m-1 records the
LPN information of pages from 0 to m-2. The meta information is separately recorded
because the firmware can't use separate secondary scope in a page, due to the

property of Barefoot controller. LPN information is used to discriminate the validity of
the user data for further garbage collection

Page 10

Copyright 2011 VLDB Lab. All rights reserved.

The Jasmine OpenSSD Platform: FTL Developer’'s Guide Version 1.2

vpage 0

User data

LPN list i

m-1

Figure (3) Block structure of user area in Greedy FTL

2.2.6. GarbageCollection

Garbage collection of the Greedy FTL is invoked if there is no more space available to
write the new data. A block containing the least number of available pages is selected
as a sacrifice block i.e, get_vt_vblock() of ./ftl_greedy/ftl.c, because of the lowest cost
for the copying page operation in garbage collection.

NOTE: Refer the below thesis for the garbage collection policy.

Atsuo Kawaguchi and Shingo Nishioka and Hiroshi Motoda, A Flash-
Memory Based File System, USENIX Winter, pp. 155-164, 1995.

Victim (VBLK #n) LPN list of VBLK #n PAGE_MAP
<t VPNA |———— » 0 N LPN VPN
FC CPBACK S~
VPNB |———— »>| 1 - A 0 A <«— Valid
~
\\
VPNC |———— » 2 - L E |<«— Invalid
~
\\
LPN list N 2 D |<«— Invalid

Figure 4) Garbage Collection in Greedy FTL

First, search the block having the lowest VCOUNT value from the VCOUNT meta table
of DRAM, the selected block is called the victim block. LPN list is read from the last
page of the block. The validity of the data in the victim block can be verified by
comparing the PAGE_MAP information, whether the LPN list information maps to the
VPN that have the latest information of the given LPN. From the Figure (4), the victim
block VPN A having the user data is mapped to LPN 0 which is the same in PAGE_MAP
table i.e,, LPN o mapped to VPN A. So, the data is the latest. Whereas VPN B and VPN
C are mapped to 1 and 3 respectively which is not the same in PAGE_MAP table i.e,
LPN 1 maps to E and LPN 2 maps to D. So, the data is invalid.

Page 11

Copyright 2011 VLDB Lab. All rights reserved. SR

VLDB L KLU
http://vidb.skku.ac.kr

LB Lab. @ SKKU
http://vidb.skku.ac.kr

The Jasmine OpenSSD Platform: FTL Developer’'s Guide Version 1.2

The valid page using this discrimination method is copied to an empty block that is
already assigned by using copy-back function of LLD library and then the existing
block will be deleted. For reflecting changed FTL meta information, the garbage
collection is ended by renewing PAGE_MAP and VCOUNT meta table. After that, the
new data is written to that block.

2.2.7. POR (Power-Off Recovery)

If the Jasmine board is normally ended, the Greedy FTL supports the POR. If there are
no 10 requests from the host, thus in SATA idle/standby state, the whole FTL metadata
is logged in the NAND flash at the FTL meta scope as shown in Figure 2 (See the ftl
flush).

If the Jasmine board is normally ended and booted, it doesn’t perform format and is

ready to perform the user 10 request by loading FTL meta data logged in FTL meta
scope (See the load_metadata function).

2.3. How to verify FTL Operations?
2.3.1. FTL logic test

After a write operation, the FTL movement can be verified by comparing two buffers
data that are read from the same scope. FTL movement verification can be done by the
following methods:

1 Using a special verifying program or verifying by inserting codes that operate
read-after-write in host application (e.g. [Ometer).

2. Using the FTL test code of firmware.
0 Set the OPTION_FTL_TESW of ./include/jasmine.h to 1 to test the FTL code. If
this option is set, after initializing Jasmine, FTL code is verified by passing
SATA and by calling ftl_test function. This function first executes ftl_write
function and then calls ftl_read function to execute comparison operation for
data validity.

0 To test in various occasions, implement various test codes in firmware code
to verify the data.
2.3.2. POR Test

POR feature of the FTL can be tested by setting the OPTION_FTL_TEST to 1 and the
ftl_test is executed by the booting firmware. The POR code is executed explicitly by
turning the power on and off so as to execute ftl_test again.

2.4. Setting up to build

To build the FTL mechanism that is porting to Jasmine firmware, create a folder

(./ftl_xxx) and add the relevant header file to FTL and source code file.

The firmware source file list that needs to be compiled is drafted in the file_list.via of
the build folder (./build_rvds or ./build_gnu). If there are any source files apart from ftl.c,
they should be added to the file_list.via to compile together.

The compile option for the relevant header file of the Jasmine should be revised. The
sort of NAND flash chip, composition of banks, 2-plane mode, size of DRAM, clock
working speed etc., could be determined by this setting, in addition, the FTL test mode,
assert verification, UART debugging, SATA 2.0/1.0, SATA NCQ could be activated or
deactivated. Once the build setting is finished, build the firmware and install firmware
binary image in Jasmine board as explained in Chapter 3.

Page 12

Copyright 2011 VLDB Lab. All rights reserved.

The Jasmine OpenSSD Platform: FTL Developer’'s Guide Version 1.2

Chapter 3.

Compile, Build & Install Firmware

This chapter explains the process of compiling, building and installing firmware in Jasmine

board.

3.1. Compile & Build Firmware

3.1.1.

First, download the latest firmware source file of the Jasmine OpenSSD platform to the
Client PC.
The Jasmine OpenSSD platform can be compiled in two methods. First method uses RV

ICE equipment and RVDS. Second method uses GNU tool-chain.

Build firmware using RVDS tool-chain

RVDS 3.0 should be installed in the Client PC to build the firmware using ARM RVDS.

NOTE: If the licensed formal version is not available, then registering at ARM Ltd.,
website allows to download the evaluation version of ARM RVDS 4.1 Professional

which expires in 30 days.

Execute the firmware build from the command window as below:

>cd . /build rvds
> build.bat [tutorial | greedy]

Once the firmware build is executed the firmware .bin i.e., firmware binary image is

created at the pertinent folder.

NOTE: If the below error is encountered during the build, halt the vaccine program

and execute.

mt.exe : general error c101008d: Failed to write the updated manifest to the resource of file...

Build firmware using GNU tool-chain

The Jasmine OpenSSDflatform can also build firmware by using GNU compile tool.

First, download latest version of the Sourcery G*" Lite Edition from CodeSourcery and
install at Client PC.

The Makefile is forced to build Tutorial FTL. Therefore, modify the first line of the Makefile

to build firmware by using ported new FTL mechanism.

FTL = new scheme

Page 13

Copyright 2011 VLDB Lab. All rights reserved.

file:///C:/Users/Preethika/AppData/Roaming/Microsoft/Word/•%09http:/www.openssd-project.org/wiki/Downloads
http://www.arm.com/
file:///C:/Users/Preethika/AppData/Roaming/Microsoft/Word/•%09http:/www.codesourcery.com/sgpp/lite_edition.html

The Jasmine OpenSSD Platform: FTL Developer’'s Guide Version 1.2

And execute the below commands in the command window.

>cd ./build gnu
> build.bat

Once the firmware build is executed the firmware .bin i.e., firmware binary image is created

at the pertinent folder.

3.1.2. Compile Firmware Installer

Execute install.exe to install the firmware. For executing the install.exe file, first,
install the Visual C++ 2010 Express Free Edition.

For the earlier version, build the Visual C++ 2005 solution file
(/installer/installer.sln) to create install.exe file in pertinent path. Copy the created
firmware installer to the FTL build path (e.g. if you try to install Tutorial
FTL, ./ftl_tutorial/).

NOTE: Execute the installer after the rebuild if the channel/way configuration of
Jasmine board and the BANK_BMP of ./include/jasmine.h are modified.

3.2. Install Firmware

Install the firmware binary image created in chapter 3.1 on
the Jasmine board using install.exe. The firmware installation

process 1is as follows:

1. Booting Jasmine board with 'Factory mode’.
o For booting Factory mode, J2 jumper of Jasmine board should be set
as shown in the below image and connect the power and SATA cable.

Then turn on the power switch.

FACTORY

Factory Mode

o Once Jasmine board is booted in Factory mode, Jasmine board is
accepted to 'YATAPDONG BAREFOOT-ROM in Device Manager-Disk
Drive of host PC.

Page 14

Copyright 2011 VLDB Lab. All rights reserved.

LB Lab. @ SKKU
http://vidb.skku.ac.kr

file:///C:/Users/Preethika/AppData/Roaming/Microsoft/Word/•%09http:/www.microsoft.com/express/Downloads/%232010-Visual-CPP

The Jasmine OpenSSD Platform: FTL Developer's Guide

Version 1.2

2. Installing firmware in Jasmine board by executing the installer (install.exe).

B Z¥#svn¥rTL(indilink]BF2¥src¥jasmine_OpenSSD_platform#build_rvdsi¥install.exe

(Bl X

lenabling factory mode-. ..
detected SDRAM size = 64 MB

initialize

read scan list from flash block @
install F¥

scan init bad blks

erase flash all

save scan list to file

read scan list from file

exit

1
2
3
4
5
6
2
8

select :.

Figure (5) Jasmine Firmware Installer

O The options are explained below:

1.

initialize

Initializes the Jasmine board.

read scan list from flash block 0

Loads bad block list installed in block 0 of the bank zeroth NAND flash
chip mounted on the Jasmine board.

Install EW
Installs firmware in Jasmine board.

scan init bad blks
Writes the bad block list scanning the NAND flash memory.

erase flash all

Deletes all the block in the NAND flash chip. Utmost care should be
taken as the firm ware installed in block 0 and the bad block list are
deleted at the same time.

save scan list to file

Saves the bad block scan list from the option 2 or 4 to the working PC as
a file.

read scan list from file

Writes bad block list by reading scan list file that is saved in option 6.
exit

Exits the installer.

o The scan list is already installed in NAND flash memory of Jasmine board

during release time. Therefore, before installing firmware, the backup scan
list in PC should be foregone. This should be done in the order of 1-2-6-3

options.

0 If the scan list installed in block O is corrupted, an error encounters in
executing the option 2. Therefore, the firmware should be installed after
saving the scan list file in the PC. This should be done in the order of 1-7-3
options.

0 If the new NAND flash module is installed in Jasmine board, install the

firmware after saving the scan list by scanning bad blocks in the NAND

flash memory. This should be done in the order of 1-4-6-3 options.

Page 15

Copyright 2011 VLDB Lab. All rights reserved.

The Jasmine OpenSSD Platform: FTL Developer’'s Guide Version 1.2

If the firmware installation is successful, you should set J2 jumper of Jasmine board with

Normal mode as in the below image:

AU Normal Mode
(Default)

Pull the SATA cable before turning on the power switch. After successfully executing
the FTL format, turn on the LED in D4 location. Once the SATA cable is connected, the
Jasmine board is ready to execute the SATA command from a host.

NOTE: Once the power of the Jasmine board is turned on, the ftl_open function is
called internally and the pertinent operation might take long time for the
implementation. Due to this the response time-out error may occur which turns on
the LED at D4 location and ends the ftl_open function. Connect the SATA cable
when the LED at D4 location is on.

If the firmware is installed successfully in the Jasmine board, the ‘OPENSSD Jasmine’
is perceived in the Device-Manager disk drive as below and then it can be used as a

complete flash SSD.

[

3 AK| 22| R}
AR SEHA) 2|V EZ2UH)
e« | @ E H=| & E NS

4 = woonhak-PC
b -G IDE ATA/ATAPI ZHE 2
b HEYI oj2E
4 023 E3t0|2
| .y OpenSSD Jasmine SCSI Disk Device
- | ST332061 3AS SCSI Disk Device|
p- B CAS20] o 2E
p - BLE
p-§ B8 NB HA HESY
p-% AMRE HICR S AY HEEY
bl Al FX]
oM ZFE
b ZE(COM & LPT)
o Z2HA

Page 16

Copyright 2011 VLDB Lab. All rights reserved.

VLDB Lab. @ SKKU
http://vidb.skku.ac.kr

The Jasmine OpenSSD Platform: FTL Developer’'s Guide Version 1.2

Chapter 4.

Debugging Tips

The Jasmine OpenSSD platform outputs the message through the UART interface and a
real time firmware debugging can be done using the ICE equipment and the RV Debugger.
In this chapter, these two methods are accounted to verify the FTL mechanism that is
installed in the Jasmine board.

4.1. Debugging with UART

4.1.1.

4.1.2.

This chapter describes the debugging process with the information printed on the

terminal window through the UART interface.

Debugging Setting

First, the UART port of Jasmine board (P1) is connected to the serial port of Client PC
through the RS232 cable. In order to use the UART interface, the on-board switch of the
Jasmine board (SW2, 3, 4) should be set as below.

e SW2:No. 1,2 3, 4(0ON)
e SW3:No. 1,2, 3,4 (OFF)
e SW4:No. 1,2, 3,4 (OFF)

Once the Jasmine board settings are done, a serial port of the terminal program should be
set as below.

. bit/sec (Baud rate):115200

e Data bit: 8
e Parity: nothingness
e Stop bit: 1

° Flow control: hardware (or Yes)

To receive a output message from UART interface, firmware must set
OPTION UART DEBUG. Set OPTION UART DEBUG (./include/jasmine.h) to 1.

Debugging by Printing Message
If the UART port is activated, dump a specific memory field (if some error occurs) or

debug the FTL firmware performance by printing the debugging message using

UART message print function i.e., uart_print, ./target_spw/uart.c.

If the UART port of the Jasmine board is initialized normally and the Jasmine board

is booted in the Normal mode, the following message should be printed.

Page 17

Copyright 2011 VLDB Lab. All rights reserved.

The Jasmine OpenSSD Platform: FTL Developer’'s Guide Version 1.2

‘& jasmine - ol0IHEDIS |Z||E|E|
OFFy MEE) 270V Z&E;(C) HE(T) EF2H)
Welcome to OpensSO s
b
< | >
HE 0258 AFE 24 115200 G-M-1 LIk

4.1.3. Measuring Response Time

Jasmine firmware also provides some functions to measure the FTL performance using
the Timer. Using the timer functions FTL read/write or garbage collection overhead can
be measured, response time can be checked or can debug the errors by printing the
messages to the UART port.

The following code explains the usage of Timer functions (ptimer start,
ptimer stop, _uart print;./target spw/misc.c;) to check the response time
when £t1 write is performed

ptimer start();
ftl write(lba, num sectors);

ptimer stop and uart print();

The following figure shows the response time (unit: us) for the above code when
inserted in the FTL test function (ft1_test ; ftl.c).

‘g jasmine - StOIHE DY =13
mF BEE 220 2O B3N ZSH)
0= 3 0y
-

29 .

2905

954

bl

3053

2666

2]

o]

3095

2903

57

bh2

3028

2838

554

565

izl

267

Bh6

6a5

3060

2943

5l

- v
< | ¥
HE G284 AS M 115200 8-N-1 ML

Page 18

Copyright 2011 VLDB Lab. All rights reserved.

VLDRE La
http://vidb.skku.ac.kr

The Jasmine OpenSSD Platform: FTL Developer’'s Guide Version 1.2

4.2. Debugging with RVD

This chapter explains the firmware debugging process using RealView debugger and
RealView ICE.

NOTE: If the FTL firmware operation is suspended explicitly with a break point
while the FTL is processing the 1/O command issued by the host to the Jasmine
board, because of the busy waiting the OS may stop. So, it is recommended to use
a separate client PC for debugging.

4.2.1. Debugging Setting
Firstly, edit the Compile environment file to perform line-by-line debugging.

Edit the Compile environment file (. /build rvds/armcc opt.via) as following
and build the firmware

-03 // modifying to -01
-Otime // delete

As Figure1, after executing the RVD setting, check connecting the ICE device with the

Jasmine board normally through a setting in the RV debugger as below:

[+ RYConfig - C:#¥Documents and Setings¥|sfeel0204. L SFEELD20A-DEV¥ Application DataWARMWrvdebugWa. (WRVI_0.rec FEx
File View Help

= FiealView ICE: (USB:109330084)
B8 vices

Jevices

ARMTTOMI-Z_rd
ARMITOMI-S_rd
Advanced TOI | ARMTTOMI-._rd 0
Trace IR Length = 4
Device Index = 1

ICE
USE: 109330084

TDO

Debug System Auto Configure Devices

Clock Speed Adaptive v [Auto Configure] [Add . Remove

[Select Platform ..] Use adaptive clock if detected Move Left Maove Right
[Trace Associations ...] Fead CoreSight ROM tables Properies ... Configure

Once the connection is complete, load the firmware image built at Target->
Loadlmage in the options. If the image is normally loaded, a firmware startup code
(./target spw/init rvds.s)can be seen as below.

Page 19

Copyright 2011 VLDB Lab. All rights reserved.

ac.kr

The Jasmine OpenSSD Platform: FTL Developer’'s Guide Version 1.2

% ARM7TDMI-S_r4_0@RVI - RealView Debugger

File Edit “iew Target Debug Tools Help O

D SH: s BRE I BPE R EF 0B EP K iflefitedss]

“Seripts | <None> v B B
55
56 ENTRY
57
> 58 | F reset handler : reset
53 B . ; undefined instruction
&0 B . : BWI
61 B . : prefetch abort
62 B . 3 data ahore
63 HOP ; reserved vector
64 B irg handler : IRQ
65 E fig_handler : FIQ
66
67 reset handler
&8
69 ; IRC mode stack
70
71 nsE CPSR_&, HMODE_IRQ:OR:I BIT:OR:F_BIT
7z LDR R13, =| Image$JER IRQ_STACK$3ZI3$Limit|
73
74 ; FIQ mode stack
75
78 nsR CPSR_c, $MODE_FIQ:OR:I BIT:OR:F_EIT
77 LDR Ri3, =|ImageiER_FIQ_STACK3ZIfSLimit|
78
KE] ; SYSTEM mode stack
80 ; SYSTEM mode is the main mode of Barefoot firmware.
81
Bz nSE CPSR_c, #MODE_S¥S:OR:I_BIT:OR:F_BIT
83 LDE R13, =|Image$3ER SYS_STACK§$ZI$$Limit|

Finally, adding and executing the ./release lock.inc script as below opens the JTAG

port of the Jasmine board completing the debugging setting.

.""'}'._ ARM7TDMI-S_rd_02BYI] - BealView Debugger

File Edit Miew Target Debug Toals Help]
D @Hisy a1l BrG >E
“Scripts | Yiwsvn,, Wrelease_lock,inc V|E¥E]Ek

4.2.2. Debugging tip #1 - “Use a break point statement”

Once the Jasmine board is powered on, the init_jasmine function

of . /target spw/initialize.c is first called by the startup code.
This function initiates various hardware components and
SRAM/DRAM scope and waits for the user IO request after calling
the ftl open function.

Let's suppose a bug is encountered in the firmware before calling a function that waits
for the user 10 request after turning on the power. For example, let's suppose there is
a bug that writes a data on a memory scope in the ftl_open fucntion that can't be
referred.

void ftl open (void)
{
* (UINT32*) OxFFFFFFFE = 10; // occur data abort

The above mentioned case is an example of the data interrupt occurred when
executing a pertinent code as soon as the Jasmine board is powered on. It is difficult
to find the location of the code where the interrupt has occurred though RV

debugger is used.

Thus, to resolve this problem, start debugging by explicitly stopping the firmware
operation just before the occurrence of the interrupt. This method inserts a dummy
while statement as below:

Page 20

Copyright 2011 VLDB Lab. All rights reserved.

VLDB SKKU
http://vidb.skku.ac.kr

VLDE La
http://vid

The Jasmine OpenSSD Platform: FTL Developer’'s Guide Version 1.2

volatile UINT32 g barrier;

voidinit jasmine (void)

{

g barrier = 0;
while (g _barrier == 0);

ftl open();

After stopping the firmware flow with the dummy while statement before
executing the ftl_open function, proceed with the line-by-line debugging executing

the RV debugger that modifies g_barrier value to 1.

4.2.3. Debugging tip #2 - “Use a H/W breakpoint”

If there is a logical error in the FTL code that reconfigures the value of the metadata
and the memory buffer. In this case, the debugging can be done using a 'hardware
breakpoint ' of the RV debugger.

Stop the firmware flow when the metadata value is changed to ‘0" and register

‘hardware write' breakpoint at a pertinent memory address as shown in the below

image.
Wiatch_1
Mame | Yalue
-l g misc meta {0x00003EB74}
{0x0000SE74}
free_phn 0=00 Add Watch,,.
free blk cnt 0x0d Farmat,.,
+ [1] {0xd

Create Brea

+ [2] {ox=(

Create Conditional Breakpoint &t,,,

Yiew Mernory At Value

Watchi Watch? Watch3 y View Memary &t Address

.""'}"._ Edit Breakpoint

Breakpoint Type

Location: 000008674

Software Instruction A
Hardweare Instruction
Hardweare Read

Walue Match: [0

Hardware Writs | Class: [Standard Breakpoint
Faorce Breakpoint Size (bits)
[0]4 l ’ Cancel] l Help]

Page 21

Copyright 2011 VLDB Lab. All rights reserved.

VLDRE La
http://vidb.skku.ac.kr

The Jasmine OpenSSD Platform: FTL Developer’'s Guide Version 1.2

4.2.4.

Type Yalue
—|® v Write Ox00005E74 |
Addre=ss O=x00005E74
Cortnarc buwrite,hv_dwvalus:0 0x00005E74

After registering the breakpoint, a bug can occur if the debugging is reactivated
because the firmware flow is stopped at the line where there is a ‘0" at the memory

address

which is an observation point.

(]

Stopped at Ox00000E958 due Lo Write at Ox0000SE74. Value=0x0000
Stopped at Ox00000BSS: FTL_GREEDY\ftl_Dpen Line 105:37

Stop>

<

Cmd | 5tdi0 | FileFind | = Log

utput

Debugging tip #3 - “Watch status registers”

The latest executed flash command is written in the BSP, in case of an interrupt, the
details of the interrupt is stored in the BSP_INTR register which helps FTL to debug.

Navigate to Memory window from View->Memory of the RV debugger, BSP
interrupt information can be found when the memory address of the BSP_INTR

register
below:

is entered. FIRQ DATA CORRUPT (0x82) interrupt can occur at bankO as

(160000760

4| 060000760

Star address Columns Data sizes Format
w | Auto column w |4 bytes + | Hexadecimal v
+0 +4 +8 +C +10 L

0x60000760 0x00000000 0x00000000 0x00000000 0x00000000
Dx60000774 | Ux00000000 0x00000000 0x00000000 0x00000000 0x00000000
Dx60000788 | 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000
M| 0x6000079c | 0%00000000 020202000 0x00000000 0x00000000 Dx00000000
0x600007B0 | 0x00000000 0x00000000 0x00000000 0x00000000 0x0000003F

Also target bank, block, page number and buffer address can be known from the

flash command remained in the BSP. The below image depicts an interrupt when a

page read operation is executed i.e, FC_NORMAL READ OUT (0xOA).

Start address Columns Data sizes Farmat
0=E0000160 ~ | &uto colurmn | 4 bytes ~ | Heradecimal

+0 +4 +8 +C +10 +14
0x600001 60 DxDDDDDm?xDDDDDEDD DxDDEIEIEIEIEIEI B
0x60000178 |Ox00000000 Ox00000000 Ox00000000 Ox00000000 0x00000016 0x00000000 . . . o & v v v v v b v v e e e e e e e e e s
0x600001920 |0x00000014 Ox00000001 Ox42F14000 0x00004000 Ox00000000 0x0007FF80 B.B.EB..........
0x60000148 |Ox0007FFS0 0x00000000 0x00000000 0x00000000 0x0000000F Ox00000000 « v w w v v 0 v v 0 0 0 0 0 m m 0 0 0 0 0 0 0 0
0x600001c0 |Ox00000014 Ox00000001 Ox42F14000 0x00004000 0x00000000 Ox000FFFS0 B.B.B..........
0x60000108 |Ox0007FFS0 0x00000000 0x00000000 0x00000000 0x00000010 0200000000 & « @ 4 4 v v v v v v v v o m v e e e s
0x600001F0 |Ox00000014 Ox00000001 Ox42F 14000 0x00004000 0x00000000 Ox000FFFE0 B.B.R...... ...,
0x60000208 |0x0007FFS0 0x00000000 Ox00000000 0x00000000 Ox00000011 0x00000000 . .+ & & & v v v v v v v v v e m e e e e e s
0xE0000160

NOTE: Ensure the memory value as a little endian. Refer the Technical Manual for

the BSP register, flash command macro and DRAM memory map.

Page 22

Copyright 2011 VLDB Lab. All rights reserved.

